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MODELING MICROSTRUCTURE EVOLUTION USING
GRADIENT-WEIGHTED MOVING FINITE ELEMENTS*

ANDREW KUPRATT

Abstract. Microstructure evolution, where grain boundaries evolve by mean curvature motion,
is modeled in three dimensions (3-D) using gradient-weighted moving finite elements (GWMFE). To
do this, we modify and extend an existing 2-D GWMFE code to create a new code GRAIN3D which
makes the 3-D microstructure modeling possible. The right-hand side term which drives the GWMFE
motion can be viewed as surface tension forces, that is, as the negative gradient of the surface integral
of a constant energy density pu on the triangular interfacial grid. Extensions to the method include
equations for the motion of tetrahedra that are conformally attached to the moving piecewise linear
triangular facets which represent the GWMFE discretization of the evolving grain boundaries. We
present some new regularization terms which control element quality, as well as preventing element
collapse in the simulation. New capabilities for changing the mesh topology are used to keep the grid
edge lengths below a maximum allowable length hmax and to mimic actual changes in the physical
topology, such as collapse and disappearance of individual grains. Validating runs are performed on
some test cases that can be analytically solved, including collapse of a spherical grain and the case
of columnar microstructure. In the spherical collapse case, the GWMFE method appears to have an
error in the surface area collapse rate f% which is O((A#)?), where A is a measure of the angular
resolution of the mesh. Finally, a run is presented where a true 3-D microstructure (possessing triple
lines and quadruple points in the interior and triple points on the exterior boundaries) is evolved to
a “2-D” columnar microstructure and finally evolved down to a single grain.
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1. Introduction. Under close examination, a sample of metal (such as copper
or aluminum used in semiconductor manufacture) possesses a microstructure wherein
the sample is decomposed into separate grains. The atoms in individual grains exist
in a crystal lattice and the lattice orientations of adjacent grains differ. The boundary
surfaces between grains are thus areas of lattice misalignment and effectively possess
an excess energy per unit grain boundary area. In the simplest approximation, this
excess energy density is a constant p per unit area for all grain boundaries. When the
sample is heated, the grain boundaries become mobile and grain growth takes place.
The motion resulting from the desire to minimize surface energy is mean curvature
motion where the normal velocity of a point on a grain boundary is proportional to
the mean curvature at that point [19]. Thus the grain boundaries move as if they
are under the influence of a driving force proportional to the mean curvature, with
motion opposed by a frictional force proportional to normal velocity (as if the grain
boundaries are immersed in a uniform, isotropic viscous medium).
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Approaches to mean curvature motion and/or grain growth modeling have in-
cluded 2-D front-tracking models [5]; Surface Evolver, a popular energy gradient de-
scent method [2]; level sets [23]; vertex methods [6, 9]; and gradient-weighted moving
finite elements (GWMFE) [1, 3, 4, 15]. 2-D front tracking models have been the
workhorse of grain growth modeling—they have been used in many research articles
and are particularly successful in the case of thin films, where the microstructure is
for the most part columnar. Surface Evolver is a widely used code available over the
web which allows the user to interactively reduce the surface energies of arbitrary
surface configurations. Constant surface energy leads to mean curvature motion, but
much more general energies and motions are possible. The method uses an explicit
step where mesh points are advanced along either the energy gradient descent direc-
tion or the conjugate gradient direction. Level set methods have the advantage of
automatically resolving certain types of topological changes that occur during grain
evolution such as self-pinchoff where a single grain divides into two or more grains.
However, when three or more grains intersect at a point (¢riple or quadruple point)
or on a curve (triple line), the standard level set formulation fails and a nontrivial
increase in algorithmic complexity is necessary to correctly model the evolution of
these points of intersection [21, 25]. Vertex methods consider points of maximum
grain intersection (triple or quadruple points) and assume the curves between these
points are straight lines. These methods may produce valid statistical results on large
collections of grains but cannot hope to compute detailed grain shapes.

Moving finite elements (MFE) [1, 14, 16] is a standard Galerkin finite element
method of computing the solution u(x,t) of a time-dependent PDE

uy = F(x,t,u,Vu,...),

with the additional novel feature that the Galerkin formalism is used to compute
domain velocities for the computational grid points in addition to determining the
time derivative of u at the grid points. Because this method would frequently over-
concentrate computational nodes in the steep portions of the graph of u, it was nec-
essary to devise GWMFE which deemphasized the importance of node placement
in high-gradient regions by multiplying the PDE residual by the gradient-weighting

1 . .
—_— < 1.
factor T S 1. Tt turns out that GWMFE can be viewed as a nonweighted

method when the independent variables are taken to be the nodal positions on the
graph of u, the residual is taken to be the norm of errors in u; in the direction normal
to the graph of u, and the inner product integrals are taken over the surface area of
the graph. In fact, GWMFE is naturally seen to be a method for evolving a surface
without the restriction that the surface be the graph of a function u and is thus a
very natural way to compute mean curvature motion. Examples of GWMFE applied
to normal motion by mean curvature are given in [15, 4]; other examples of GWMFE
computations involving mean curvature are given in [12, 13, 18]. Other GWMFE
computations and an exposition of the method from a somewhat different viewpoint
are given in the now standard book by Baines [1].

Recently, we took the 2-D version of GWMFE used in [4], which represents evolv-
ing surfaces by piecewise linear triangular elements, and incorporated it into a new
code GRAIN3D which extended its capabilities so that general microstructure evolu-
tion could be simulated. Specifically, a program called LaGriT [8] was used to produce
3-D models of metallic microstructure which consisted of a domain Q C R? partitioned
into grains, each of which were composed of hundreds of tetrahedra. The triangular
interfaces between the grains were extracted from the 3-D model and evolved by
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GRAIN3D using the GWMFE algorithm. Additional equations of motions were de-
vised for the “extra” vertices in the 3-D model that were interior to the grains and not
on the grain boundaries. Motions were determined solely by the requirement that the
tetrahedra remain well-shaped (i.e., have a low aspect ratio) as the surfaces to which
they are conformally attached deform under mean curvature motion. Finally, grid
topology-change software was written to maintain to some degree a roughly constant
spacing between grid points as the mesh deforms and to make possible physically
significant topology changes, such as the collapse and disappearance of certain grains
during the course of evolution.

The new capability of supporting a system of tetrahedra that is conformally at-
tached to the moving triangular surfaces will be crucial in the future when we use
these volume elements to compute ambient quantities throughout  (such as temper-
ature). This will allow more detailed simulations where the medium’s resistance to
grain boundary movement is not assumed uniform. (Note, for example, that grain
boundary mobility in fact strongly depends on temperature [19].)

In section 2, we review GWMFE from a surface evolution point of view. We
present a detailed derivation of how the GWMFE right-hand side integral involving
curvature is evaluated and show that this integral can be seen as the negative gradi-
ent, with respect to the nodal position vector x = (z;,y;, 2;) of the surface integral
of a constant energy per unit area p on the discretized interfaces. In section 3, we
review regularization terms necessary for the GWMFE method to work efficiently,
and we introduce a right-hand regularization term involving a quality force that con-
trols element quality as well as preventing element collapse in the simulation. We also
present a regularization force that prevents excessive stretching of elements, derived
from a small artificial surface energy associated with each triangular facet. In sec-
tion 4, we introduce additional equations for moving tetrahedra conformally attached
to the GWMFE triangular interface mesh. In section 5, we touch on grid mainte-
nance operations necessary to keep grid edge lengths below a maximum allowable
hmax. In section 6, we describe recoloring operations necessary to perform impor-
tant topological changes in the microstructure simulation, such as the collapse and
disappearance of individual grains. In section 7, we compare numerical solutions com-
puted by GRAIN3D to analytic solutions for the cases of spherically symmetric grain
collapse and columnar microstructures. In section 8, we show a numerical example
where GRAIN3D evolves a truly 3-D microstructure.

2. Mean curvature motion and GWMFE.

2.1. Review of method. We use GWMFE [3, 4, 15] to move a multiply connect-
ed network of piecewise linear triangles for the modeling of deformation of 3-D grains.
In one model of metallic grain growth [19], interface surfaces obey the simple equation

vy = pkK,

where v, is the normal velocity of the interface, K is the curvature, and u is the
product of the excess energy per unit area and the mobility of the grain boundary.
K is the sum of principle curvatures, i.e., twice the mean curvature. In this paper,
we assume that p is constant, i.e., it does not depend on the choice of materials on
either side of the interface, nor does it depend on the orientation of the interface. We
represent interfaces as parametrized surfaces:

x(81,82) = Z a;(s1,82)%;.

nodes j
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Here, (s1, $2) is the surface parametrization, the sum is over the N interface nodes,

a;(s1, $2) is the piecewise linear basis function (hat function) which is unity at node j

and zero at all other interface nodes, and x; = (le7 22, 2%) € R? is the vector position

gty
of node j.
We have that

x(s1,82) = Z a;(s1, 82)%;,
J

is the velocity of the surface at the point x(s1, s2) (based upon linear interpolation of
node velocities) and

Up = %(81,82) - (N is local surface normal).
So
(1) vn =Y _(hay) - %;.
J
In effect, we have that the 3N basis functions for v, are nyo;, where i = (ny,ng, n3).
These basis functions are discontinuous piecewise linear, since the nj are piecewise

constant.
The GWMFE method is to minimize

(2) / (v, — pK)? dS

over all possible values for the derivatives %X;. (The integral is over the surface area of
the interfaces.) We thus obtain

_La
- 201k
= /(vn — pK)ngo; dS.

Using (1), we obtain a system of 3N ODEs:

[ / an’ o4 dS] %; = / pKio; dS,

/(vn—uK)QdS, 1<k<3, 1<i<N

or
(3) C(x)% = g(x),
where x = (21,22, 23,23, ..., 23)T = (x1,%x2,...,xn)7 is the 3N-vector containing

the z, y, and z coordinates of all N interface nodes, C(x) is the matrix of inner
products of basis functions, and g(x) is the right-hand side of inner products involving
surface curvature. Since A7 is a 3 x 3 matrix, it is clear that C(x) has a 3 x 3 block
structure.

The ODEs are solved with an implicit second order backwards difference variable
time-step ODE solver [3]. We use generalized minimal residual (GMRES) iteration
[22] with block-diagonal preconditioner to solve the linear equations arising from the
Newton’s method. (A more complex and robust choice of iterative method and pre-
conditioner is used in [24] to solve systems involving indefinite Jacobians that arise
when GWMFE is applied to problems involving convection.) The ODEs are scaled
so that the variation of the a:;“ values is O(1) and the truncation error n (i.e., the

k every time step) is usually set

maximum acceptable estimated error made in the

to 1073,
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Fia. 1. Definition of some quantities around node i, edge e.
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F1G. 2. Cross-sectional view of grid. Edge e is orthogonal to page.

2.2. Evaluation of right-hand side curvature term. The right-hand side
term due to curvature,

/ pKho; dS,

requires special consideration because on a piecewise linear manifold K is actually a
distribution which is zero in the interiors of the triangles and infinite on the edges.
Evaluation of this term is undertaken by mollifying (smoothing) the manifold in a
small neighborhood (within a small distance §) of the edges and then showing that
| Kha; dS on the §-mollified manifold tends to a limit as § — 0 which is independent
of the mollification process. This mollification interpretation is extensively explained
in section 2.6 of [15], sections 2.3 and 4.10 in [3] (for 1-D), and sections 3.3 and 6.4
in [4]. For completeness we include a derivation here. Indeed, referring to Figure 1,
we consider one of the edges e emanating from node ¢ and we let s, be the arclength
parameter running parallel to the edge and s, be the arclength parameter correspond-
ing to movement on the manifold perpendicular to the edge. The length of the edge
is Le. In Figure 2, we show the intersection of the surface with a plane orthogonal
to the edge e. The intersection yields a smoothed curve (due to the mollification of
the surface). We assume the mollified region runs from s, = —6 to s, = +6. The
intersection curve has tangent t(s,) which varies smoothly between £(—8) and t(+6).
fi(s, ) is the normal to the surface, which smoothly varies between fi(—4§) and fi(+96).
We define @, ¥ to be unit vectors in the plane with @t x ¥ = & (the unit vector parallel
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to e). 6 is defined as the angle that €(s,) makes with @.. Now we write

L. s
/uKﬁai ds =pu Z / </ Ko, dsL> ds,
0 -6

edges e
with i€e

~p Y (/OLeai(s)dslx/_Zﬁﬁdsl).

edges e
with i€e

That is, the right-hand side curvature inner product at node i is the sum of contri-
butions from edges e incident on ¢. In the 26-wide strip near edge e, a;(s;,s.) is

nearly a piecewise linear function of only s, which is 1 at s, = 0 and 0 at s, = L.
This means that the first integral evaluates to %Le. The curvature K of the mollified
do

surface is dss since there is no curvature parallel to edge e in the unmollified surface
(and hence no curvature in this direction for the mollified surface as well). Now

s 0(6)
A 4 gs, = / A do
_sds. 0(—0)

0(8)

= / (—sin 6 + cos 6¥) db
0(=9)

0(8)

= cos 6 + sin OV

0(—6)

=t(6) — £(—90).

So we obtain as § — 0 that

1 .y -
/uKﬁai dS=p Y iLe(tﬂf) + &),

edges e
with i€e

where ES), f:éz) are unit normals in the piecewise linear surface which are both or-

thogonal to e. Eél) points into one triangle sharing e, and Ef) points into the other
triangle sharing e. Now we can rewrite this sum as a sum over the triangles incident
on %:

1 - -~
/ ko ds=p Y S(LPE)+ L),
triangles k
with i€k

where for each triangle k, L,E}) is the length of one of the edges bordering %k that

contains ¢, f,(;) is the inward normal to that edge, and L;f), f,(f) are the corresponding
quantities for the other edge. (See Figure 3.)
Interestingly, since Z?zl L](g )f](g ) =0 (again, see Figure 3 for the definition of

Ll,(f')7 EI(CS)L we have

1 ()
/ pKho; dS=—p Y §L,§3)t§f}

triangles k
with i€k

()

triangles k
with i€k
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Fic. 3. Definition of quantities around node i, triangle k.

where Ay, is the area of triangle k. If we attribute an energy of u per unit area to the
surface, then this becomes

(4) /uKﬁai dS = —Vy,FE,

where

triangles k

is the total energy of the surface. This shows that the node-concentrated right-hand
side force on the ith node is derivable from the negative gradient, with respect to the
node position variables x; = (x;, ¥, z;) of the surface integral of an assumed constant
surface energy density of u in our GWMFE manifold. This mirrors the physical model
where mean curvature motion was derived under the assumption that the mechanism
of grain growth is minimization of excess surface energy proportional to the surface
integral of u. This negative gradient force on the ¢th node is exactly that which would
be given by a “surface tension” of magnitude p in the planar triangular cells of our
GWMFE manifold, as pointed out in [15, 4].

We note here that the form (4)—(5) for the right-hand side PDE driving terms
makes conceivable computations where p = p(#), that is, where p depends on the
direction of the normal at the surface. In this case, one need only loop through trian-
gles in the mesh and evaluate the quantities (4)—(5) using the orientation-dependent
w. If 4 depends strongly on i, faceting of the surface can occur [7].

3. Regularization. In [15] it is shown how (3) represents a balance of forces
on the moving GWMFE surface. The right-hand side represents driving forces from
the PDE, and the left-hand side represents viscosity forces that resist these driving
forces; all these forces are taken to be concentrated at the nodes. In practice, certain
grid configurations can cause C(x) to be nearly singular, so that there exist essen-
tially undamped node motions that lead to chaotic grid behavior and collapse of the
time step. To alleviate this, Carlson and Miller [4] added a term (a left-hand side
regularizing force) that was of the form C;(x)x so that the total matrix (C+ Cy)(x)
was positive definite.

In addition certain grid behaviors are possible, such as the collapse to zero of the
inscribed radius of a very thin or large aspect ratio triangle, which has no physical
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significance (i.e., which does not affect the shape of the surface) but which causes a
catastrophic loss of time step and run termination. To alleviate these problems, small
regularizing forces are added to the right-hand side of (3). The form of these forces
differs from those used in [4].

3.1. Left-hand side grid viscosity forces. Suppose a node ¢ and its neigh-
boring nodes are all nearly coplanar. More precisely, suppose that there exists a plane
P (spanned by @ and ¥) such that x; and each member of {x; | nodes ¢ and j share
an edge} have normal distance < 7 to this plane. Then, since the local truncation
error tolerance is 77, computationally this situation is indistinguishable from the case
where x; and all the x; exactly lie in the same plane. In this case, it is apparent
that one could alter %; (or x;) by a plane vector aii + b¥ without altering the normal
velocity (or the shape) of the surface in the neighborhood of node i. Since (3) is
derived from (2), which is a minimization that is unaffected by these additional node
motions for node i, we conclude that C(x) nearly annihilates the 2-D subspace cor-
responding to the in-plane motions of node i. If this degeneracy or near-degeneracy
is not remedied, the motion of node ¢ will not be smooth, if it is defined at all, and
the time step will decrease greatly. (This describes a planar-type degeneracy at node
i; there are also possible crease-type geometrical degeneracies in which the manifold
has a straight crease through node i, as in the straight ridge of a roof. See section 3.1
of [15] or section 2.4 of [4] for a further discussion and for a derivation of the following
grid viscosity forces for GWMFE. Also see Chapters 6 and 7 of [1].)

To remedy such degeneracies, we add the small grid viscosity force

(6) €1 [/Ig(vsai -Vsay) dS|%x; = Ci(x)%x

to the left-hand side of (3). Here I3 represents the 3 x 3 identity matrix, which
indicates that grid viscosity is isotropic in that it treats independently and identically
the , y, and z components of the velocities X;. ¢, is a small number, and the gradient
Vs is with respect to the tangential coordinate system of the surface. We now show
(6) is equal to

1
(7) Ve, 5 [ 11V ds.

Here Vy, is the gradient with respect to the node velocity %x; and x = ) %X;a;(s)
is interpolated grid velocity. Vgx is the gradient with respect to surface measure of
interpolated grid velocity and, hence, it is a 3 x 2 matrix. ||VsX||? is the sum of
squares of the six components (i.e., the Froebenius norm). To show (7), we have that

1 . 1 . 2
Vi, §/||VSXH2 dS = Vx, Q/HVS;xkakH ds
1
= Vx, 5/22(5% -%;)(Vsay - Vsay) dS
kE J
= /ij(vsai . széj) dS

J

-y [/13(Vsai Vo) dS} %;.
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Thus, our regularization force is, for each node, the velocity gradient of a velocity
potential and the effect of this force is to reduce [ ||Vsx|> dS, a measure of the
nonuniformity of the interpolated velocity field.

Using arguments in [3], €, is chosen in the range

(8) 25n% < €, < 2512,

so that the effect of the regularization term dominates only when x; and the neigh-
boring x; are within 7 of an exact plane. If the graph is not nearly planar in this
sense, the left-hand side will be dominated by C(x)%, which represents viscous node
resistance arising from the minimization principle (2).

3.2. Right-hand side triangle quality force. Minimization of (2) does not
prevent the collapse of triangles in the moving grid; if triangle collapse (i.e., shrinking
to zero of inscribed radius) is allowed to occur, the numerical run will have to be
terminated. To prevent triangle collapse, a right-hand side regularizing quality force
is added of the form

(9) _62vxi Qtri’

where Q! is a dimensionless quality energy:

(1)y2 (2)\2 (3)\212
. . L + (L + (L
(10) Qtrl E chrl 2 : |:( k ) ( k ) ( k ) ,
llk
triangles k triangles k

where the LEJ) are edge lengths for triangle k and Ay is the area. Q' has a minimal
value of 221 = 48 for an equilateral triangle and gets larger as the aspect ratio of
the triangle gets larger. That is, poorly shaped triangles have poor quality and a
large quality energy. eri is dimensionless and is thus independent of the scale of
the triangle k. However, the force —Vy, Q}C“ is not scale invariant and its magnitude
increases as the scale is decreased. We can thus choose €, to be equal to a value
such that —ineri dominates for small triangles with shortest altitude < 7. This
will prevent triangle collapse. Indeed, for triangle k (assuming the nomenclature of
Figure 3), we have that

3 2\ 2
) . (L
_vxi GZQZ-TI _ _szxi (zj]l(k))

Ay
3 . 3 . . 3 .
o —26 Z]:l(LECJ))Q 22]:1 L](C])Vlegcj) _ Z‘]:l(Li‘]))2 vx,,Ak
- Ak A Ak Ay
BIECLN I LRI
= 2 3 _
S (L) Ay
e c) @
— % tri [ k vxL(l) _ k VXL(2) 4 “k ,
e ( L 5 L e e @

where hl(cg) is the altitude of the vertex x; above the opposite edge in triangle k

and ||Lg||? is the square of the Iy norm of the edge lengths. Since —inLg) and

—Vx, L;f) are unit vectors directed along the edges in triangle k that originate at x;,
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. . ; LM
we have that the first two terms represent tension forces of magnitudes 4€2Q§€“W

L@
and 4e, }c“lli%, respectively, which act along edges that attract node x; to its

neighboring nodes in triangle k. Since f,(f) is a unit vector pointing normally towards

node x; from the edge opposite x;, the third term represents a repulsive force of

tri
magnitude 26;(%’“ that prevents triangle collapse. The quality force thus causes a

node to be at‘tracted along edges and repelled along altitudes. It is zero only for
the case of an equilateral triangle. If the triangle is nonequilateral, there will be a
node with a shortest altitude that will feel a net repulsion from the opposite edge. If
the triangle shape becomes very distorted, the node will feel a repulsive force that is
arbitrarily larger than the attractive forces directed along the edges.

Assuming the case of distorted, nonequilateral triangles with shortest altitude at
X;, we wish the dominant repulsive force be comparable to the “physically justified”
driving force arising from the PDE, —Vy, [ u dS, when the shortest altitude of the
triangle is of order 7. Thus, referring to (5), we set

2% Qtri
;(3)k = || = Vi, A
k
3)
2 )
so that

3 3
oI

4Q§€r1

Since we are assuming Q' > Qit) and L,(CB) > hl(j) = O(7n), to obtain an order of

magnitude estimate for €, we insert the trial values Q%' = 10 Qggil and hgf) =1
(which implies that roughly LS’) =6 ). This leads to

(11) € =3 x 1072 un*.

Certainly with Qi = 10 ng;l we have that the repulsive force along the triangle
altitude dominates, as assumed. If Q¥ > 10 g’gh for triangles with shortest altitude
of order 7 (or larger than n for sufficiently distorted triangles) the “quality force” is
stronger than the physical tension force. This means that large aspect ratio triangles
are prevented from forming or are “locked up,” prevented from attaining an even
worse shape. In practice, these needle-shaped triangles make up a small amount
of the surface area of the computational interface surfaces and do not significantly
affect the accuracy of the computed solutions. If Qi < 10 Zf;l, the quality force is
zgl we have that the attractive forces along edges
begin to cancel the repulsive force until at Q}Cri = 221 there is no force whatsoever.
Thus the force (9)—(10) does allow for the collapse of triangles if they remain perfectly
equilateral during collapse. However, in practice, there is always some asymmetry in
the computational runs, and so (9) with choice (11) is indeed effective at preventing
triangle collapse. In fact, €, is chosen to be somewhat less than the estimate (11)
since we have found that the choice of €, (and of the other regularization coefficients
€, in this paper) is not critical and we can err on the side of introducing less artificial

regularization forces.

tri

weaker and for @} approaching @
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3.3. Right-hand side perimeter-dependent surface energy. The opposite
of grid collapse is excessive stretching of triangular elements. If edges exceed a certain
maximum acceptable edge length hy, .y, then the GWMFE method is running on too
coarse a discretization, degrading accuracy of the results. Even if the initial grid
has all edges < hpax in length without explicit intervention, it is quite possible that
some edges exceed hp.x in length after some grid evolution. To discourage excessive
grid stretching, we add a right-hand side surface energy that is proportional to the
perimeter of the triangles:

_VXi 63Eperirn _ _VXi (63 Z E,Serim)

triangles k

triangles k

This corresponds to an artificial energy density us = €;p,,, where p,, = L,E}) +L,(€2) —|—L§€3)
is the triangle perimeter. This force grows in strength as the perimeter gets large,
and thus excessive stretching of individual elements will be avoided. Since it is highly
likely that most edges will be near hp .y in length, the artificial energy density will
constantly be affecting the solution, introducing errors throughout the grid. (This
is as opposed to the triangle quality force which will only affect the solution near
“hot spots” where the grid has “thin” elements nearing collapse.) Errors in surface
velocities due to (12) will be roughly O(us/p) throughout the grid, so we want this
quantity to be less than some tolerance. On our O(1) grid, n represents a tolerance
on fractional error in node position. It is reasonable to also take this as fractional
error in surface velocity, and so using ps ~ €;(3hmax), we obtain

i
1 < .
(13) “ N e

4. Enlargement of system to move noninterface nodes. System (3) is
integrated using a second-order implicit variable time step ODE solver [3]. However,
it gives velocities of the interface nodes only (%X = (&} )2/5}), and so the system
must be enlarged to include velocities for M interior nodes that are not part of the

interface. That is, we extend x to

X

interface

X = 5
X'inter'ior

= (ah)i=r=? With this extension,

k), 1<k<3
) and x J /) N+1<I<SN+M"

where Xinierpace = (25 ) 2,2y interior
we enlarge system (3) to be order N + M.

Since interface physics only tells us how to evolve the N interface nodes, we must
“artificially” construct the extra elements in the enlarged C(x), g(x) to allow for
orderly (tetrahedra orientation preserving) evolution of the mesh. That is, given a
physically meaningful method of evolving the triangular interfaces, we are free to
develop auxiliary equations for moving the tetrahedra (some of which are conformally
attached to the triangular interfaces) with the only requirements being that these
equations lead to efficient solution of the system (3) and that they maintain positive
orientation of tetrahedra.

A natural choice for the additional equations is to generalize the left-hand side
regularization force (6) to viscously damp volume grid motions, and to generalize the
right-hand side quality force (9)—(10) to seek well-shaped tetrahedra.
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4.1. Volume grid viscosity force. To the left-hand side of (3), we add the
following contribution:

(14) 64{/13(%1 - Vay) dV |%; = Cy(x)%.

Here, V&; = Va;(x) is a piecewise linear hat function defined for x € R3. a; is 1 on
the jth node in the tetrahedral mesh and zero on all other nodes. Vé&; is the gradient
of &; over the tetrahedra (i.e., V = Vy, where x € R3.) The integral is taken over
the whole volume domain Q C R? which has been partitioned into tetrahedra. This
is a generalization of the surface grid viscosity term (6). Similar to (6)—(7), (14) is
easily seen to be equal to

1
(15) eVx, 5/||V>'<||2 av,

where X = >, %;@;(x) is interpolated volume mesh velocity. As in the case of surface
grid viscosity, the effect of (14) is to reduce nonuniformities in volume grid velocity.
So, for example, if a collection of noninterface nodes were surrounded by a set of
interface nodes all moving at constant velocity a, the solution of the system

C,%=0,

X; = a at interface nodes

would be X = a at noninterface nodes as well. This is clear, since in this case
J|Vx||? dV is zero and is thus minimized.

To choose a suitable value for ¢,, we compare (6) and (14) and arrange for these
terms to be roughly of the same order. Suppose node i is on the interfacial triangular
network. We choose €, so that the diagonal elements of the matrices C; and C,4 are
roughly the same. That is,

€y / Vdi . VO?Z dV =~ € /Vsai . Vsai ds.

If we assume that the altitudes of the volume elements sharing node 7 are about the
same magnitude as the altitudes of the surface elements sharing node ¢, then the
integrands of the two integrals are roughly the same. Thus we should have

€4 €, /Vsai . VSOAi dS//le . le dVv
~ 61/ dS// av
|[x—x%;|<h |[x—x;|<h
1

3
= 1R
where h is the length of a typical edge in the mesh near node i. We approximate i by

hmax, since in practice many edges are at (or near) the longest allowed edge length in
the computation. Thus, using (8), we arrive at the guideline,

(16) -2772/hmax <€ < 20772/hmax~
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4.2. Volume quality force. Similar to section 3.2, to prevent tetrahedral col-
lapse and inversion as the mesh evolves, to the right-hand side of (3) we add the
tetrahedral quality force
(17) _ESVXiQtet7

where Q% is the dimensionless quality energy

6 ()25~ A(n)y2
(18) Qtet — Z Q]toet — Z Zn:l(LP )V2Zn=1( P ) 7

tets p tets p p

where the L,(,n) are the edge lengths, the A:S,") are the face areas, and V), is the volume
of tetrahedron p. @, is a dimensionless quality measure which has the minimal value
tei = 324 if p is a regular (equilateral) tetrahedron but approaches infinity if p has
a worsening aspect ratio. We note that Q%' (10) and Q;et are both equivalent to
||L[|?[| %%, the square of the I norm of the edge lengths of the element multiplied
by the square of the ls norm of the inverse altitudes of the element. They are thus
dimensionless element quality measures which are extremely smooth (i.e., require no
square root evaluations).
The argument for setting €, is similar to that for setting e,. Suppose one face k of
a nearly collapsed tetrahedron p is on an interface. Suppose node i is on this face. We
choose €; so the force on this node due to the quality force begins to dominate for small
nonregular tetrahedra with shortest altitude < 7. Analogous to the triangle quality
force of section 3.2, node 7 is attracted along the edges of tetrahedron p emanating
from the node (terms involving inLl()n)), node ¢ is attracted along the altitudes of

the faces emanating from the node (terms involving inAZ(,n)), and node ¢ is repelled
along the altitude from the face opposite the node (the term involving Vy,V,). The
quality force is zero only for the case of a regular tetrahedron. If the tetrahedron is
nonregular, there will be a node with a shortest altitude that will feel a net repulsion
from the opposite face. If the tetrahedron shape becomes very distorted, the node
will feel a repulsive force that is arbitrarily larger than the attractive forces directed
along the edges and faces. So assuming that the shortest altitude (and hence greatest
quality force) occurs at x;, we have

S0 (LS (AY)?

tet
—€Vx; Qp = —6Vx,

Vp2
6 n 4 n
90 Znma (L) Yy (A57)? VsV,
~ 4€5
vz v,
2 i tetA'
— 6"@1” t27
hi P

where h; is the altitude of point x; above the opposite face in tetrahedron p, and E; is
a unit vector pointing along the altitude (towards x;). As in section 3.2, we wish the
magnitude of this force to be equal to the magnitude of the physical force —Vy, nAy
due to surface tension over the interface triangle k of tetrahedron p. Again using the
nomenclature of Figure 3, we have
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265Qtet
hip = || - vxluAkH
P

3

_ pLy

5

So

_ Lk
€ = Qe

To obtain an order of magnitude estimate for €;, we insert the trial values Q;ft =
10 QL4 and R}, = 1, which implies that roughly Lf:’) =51 (see below). This leads to

eql

(19) €~ 4 x 10~ *un>.

We justify the assignment L,(CS)/ h; = 5 when Q;,et =10 ngﬁ as follows. We assume
face k is roughly equilateral (the force in section 3.2 presuming to have prevented poor
aspect ratio triangles on the interface). So say Lg) = L,(f) = L,(CS) = L. But we are
assuming tetrahedron p has a short altitude h;, at node x; pointing away from interface
triangle k into the volume. Given the classification of nearly degenerate tetrahedra in
[11, p. 286], tetrahedron p either has a single short edge at x; or no short edges at all.
In both cases, a rough calculation shows L/hl, ~ 5 when Q" = 10 ngtl. The remarks
at the end of section 3.2 (which discuss the cases @ < 10 and @ > 10 for triangles)
are analogously true here for tetrahedra. Again, these are only order of magnitude
estimates which are adequate for setting regularization force coefficients.

4.3. Tetrahedron lock-up. The grid forces acting on tetrahedra move the grid
by (1) acting to minimize nonuniformities in grid velocity, and (2) acting to contin-
ually improve grid element aspect ratios. The artificial grid forces have the effect
of necessarily overriding physically justified node movement when it is necessary to
prevent inversion of tetrahedra. For instance, if a tetrahedron p has all 4 nodes on an
interface, the motion given by (3) might cause the tetrahedron to invert, especially
if the interface changes its sense of curvature. By adding the quality force (17) and
(18), the tetrahedron will lock up when the shortest altitude is close to n and will
be prevented from inverting. The effect of this on the simulation is acceptable with
regard to accuracy since the lock up of a small number of tetrahedra simply removes
a small fraction of numerical degrees of freedom from the simulation. The effect is
further reduced if the locked up tetrahedra are effectively removed by merge and swap
operations mentioned in the next section.

4.4. Equation summary. After adding regularization and tetrahedral dynam-
ics terms to (3), the complete system of ODEs that we solve in our implementation
of GWMFE is

U (An” a0 + I36, (Ve - Vsaj)) dS + /1364(V&i-v&j) dV | %;
(20) = / pKiha; dS — Vi, (Q + e, BP™™ 4 ¢,Q™") , 1<i< N+ M.

Here the system has been written as N + M 3-vector equations, one associated with
each of the N interface nodes and M interior nodes. The left-hand side is an implied
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sum over all the nodes j in the mesh. The “artificial” terms involving €, ..., e; and
guidelines for setting e,,...,€; are explained in (6), (8), (9)-(11), (12), (13), (14),
(16), (17)—(19). For the left-hand side, if either ¢ or j is not an interface node, then
the surface integral is not defined and does not contribute to the left-hand side. On
the right-hand side of (20), if ¢ is not an interface node, then only the term involving
@'t is defined and contributes to the right-hand side.

5. Grid maintenance operations. As the surfaces move and grains deform,
mesh maintenance and mesh optimization tools are used to ensure good element
quality and to ensure grid edges do not stretch beyond the allowable maximum length
hmax- Primitive grid operations provided by periodic calls to LaGriT, the Los Alamos
Grid Toolbox [8], provide a basis for mesh maintenance and optimization. The merge
primitive accepts as input lists of pairs of neighboring nodes: merge candidate nodes
and survivor nodes. If the merge is completed, only one of the pair survives and the
mesh connectivity is repaired to reflect that one node has been deleted. Before the
merge takes place, LaGriT verifies that the merge will not cause tetrahedra to become
inverted and that the node types and surface constraints of the survivor and merged
nodes will lead to a legal merge. The refine primitive used in these simulations adds
nodes at the midpoints of selected edges. LaGriT sets the node type and surface
constraints of the added nodes by determining if the added node is in the interior, on
a material interface, or on an exterior boundary. The grid connectivity is repaired to
include the new elements created by connecting the new node to the other vertices
of the elements which contained the refined edge. Depending on what is desired by
the user, the recon primitive swaps connections to either improve a measure of the
geometric quality of the elements (closely related to Q;* in (18)) or to maximize the
number of elements satisfying the familiar “Delaunay” criterion.

The three primitives, refine, merge, and recon, are combined into the LaGriT
grid optimization operation called massage. (Massage is similar to the algorithm
presented in [10].) Massage accepts three arguments: a creation edge length, an
annihilation edge length, and a damage tolerance. (In our numerical runs, we set
these three tolerances to .3, .3, and .01, respectively.) Refinement is carried out
such that no edge in the grid has length greater than the creation edge length. The
refine primitive is invoked using a version of an algorithm due to Rivara [20]. In the
algorithm, an edge marked for refinement is placed on a stack. The algorithm then
checks that the elements containing the marked edge have no other edges longer than
the marked edge. If longer edges are encountered, they are placed on the stack ahead
of the marked edge. The process continues recursively. The refinement candidates are
then popped off the stack and refined, resulting in a refinement pattern proceeding
from the longest edges to the shortest; this pattern is desirable since it usually does
not degrade element quality. Massage may attempt to merge pairs of points only
if the resulting grid has no edge length greater than the annihilation length. The
damage tolerance specifies the amount of change to the shape of a material interface
that is permissible. If a node that sits on a material interface is merged out, the
interface will become flatter at that point. If the distance from the merged node’s
original position to its projected position on the flattened interface is greater than the
damage tolerance, the merge will not be allowed. Since merge and (less commonly)
refine can produce poorly shaped tetrahedra, then recon is used to restore well-shaped
elements.

6. Mesh response to grain topology changes: Recoloring. As grain bound-
aries move, topology changes must be detected and the mesh must be modified to
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reflect these topological changes. The topology changes are detected by assembling
and monitoring the rate of change of sets of topological components. To detect grain
collapse, we assemble sets of connected elements of the same material. For interface
surface collapse we assemble sets of connected interface triangles between two ma-
terials; for boundary surface detachment, we assemble sets of connected boundary
triangles that lie on a given boundary surface; for triple line collapse where a line is
surrounded by three or more materials, we assemble sets of connected edges. We mon-
itor the rate of collapse of these sets, and when a collapse or detachment is imminent,
the mesh is adjusted. We identify a neighborhood that completely surrounds the col-
lapsing feature and assign a new material to the elements in this neighborhood. We
refer to this as recoloring. Ideally, the encroaching material that is accumulating most
rapidly is chosen to be the new material, but in this first version of our algorithm,
the new material is chosen randomly from a list of viable adjacent materials. Soon
after the material reassignment, the curvature driven interface motion will effectively
straighten the interfaces. Figure 4 is a schematic of three types of topological change.
The first frame in each sequence shows the event as it is detected by GRAIN3D;
the dotted line demarcates the neighborhood to receive a new material assignment.
The second frame shows the mesh just after the material reassignment, and the third
frame shows the mesh after the interfaces have straightened. A further topological
change, self-pinchoff, where a grain intersects itself and splits into two pieces, is yet
to be incorporated in GRAIN3D.

7. Comparison against known solutions. To gauge the accuracy of the
GWMFE method, we set up two types of test cases with analytically known collapse
rates: spherical collapse and columnar grains.

7.1. Spherically symmetric collapse. The collapse of a spherical grain is
easily solvable analytically and provides our first test of the accuracy of GWMFE.
Assuming that a sphere is collapsing with normal velocity equal to the curvature (i.e.,
the sum of principle curvatures), we have

dr 2
— =K =——.
dt r
So
dA  d(4mr?)
e dt
dr
= 8777"&
= —16m7.

The rate of change of surface areas is thus constant and is thus a convenient quantity
to use for comparison with a numerical GWMFE solution. In Figure 5 we show
the initial grid for a 42-node polyhedral representation of the sphere and then at
t = 0.04. In Figure 6, we do the same for a 162-node sphere. The highest resolution
case of a 642-node sphere is not shown. For each case, the triangles on the surface
of the sphere are visible. Edges from tetrahedra conformally attached to the outside
of the sphere are visible as well. Of course, tetrahedra within the sphere are not
visible. Each surface point on the sphere is placed at exactly radius 0.5. We ran the
code with p =1, n = 1072, hmax = 0.3, &, = 512, €, = 10_4772u, €; = nu/hmax,
€, = 5772/hmax, and €; = 107*n2u. In Figures 7-9, we display results for these cases
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Cillnpee of Entire Groan;

Fic. 4. Topological collapse detection and resolution by GRAIN3D.

showing computed graphs of % vs. t and A vs. t (each dot signifies a time step)
and compare them against the analytical results. Note that we apparently converge
to the correct —% as the number of nodes is increased. Also note that at ¢ = 0,
each numerical solution starts with a surface area less than the exact area 7 due to
the flatness of the triangular facets. As can be seen, this initial surface area deficit is
essentially maintained unchanged as the sphere collapses. Hence, errors introduced by
the numerical solution seem to be less than errors introduced by simply discretizing
the initial condition!

Of course, near the terminal time ¢t = 77— = 0.0625, we have that the numerical
solution for these three cases deviates from the analytic solution. Near the terminal
time, the tetrahedra inside the sphere have been collapsed to the point that the
shortest altitudes approach 1 and the tetrahedral quality force (17)—(18) takes over
and stops the collapse. If this were a grain growth simulation run, the topology change
software would have recolored the collapsing tetrahedra to the color of the surrounding
medium close to the terminal time. However, by turning off the recoloring algorithm,
we are able to see how the tetrahedral quality force eventually will dominate if no
corrective topological change is taken.

To get a better idea of the accuracy of the pure GWMFE method without regu-
larization, we reran these three cases with =1, 7 = 1073, hyae = 0.3, €, = .00172,
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F1G. 6. Initial 162-node sphere (with attached tetrahedra) and at t = 0.04.

€, =0,¢6,=0,¢, = .001772/hmax7 and €; = 0, which represent zero right-hand side
regularization forces and left-hand side internodal viscosities far smaller than recom-
mended. We plotted —% for these three cases against the theoretical collapse rate in
Figure 10. These simulations abruptly end when the terminal time is reached in the
absence of counterbalancing tetrahedral quality forces. It is apparent from this figure
that the error in —% is constant over each run, and that the error is cut by roughly
a factor of 4 when one increases the number of nodes from 42 (Case 1) to 162 (Case
2), and then the error drops by a factor of four when the number of nodes is increased
again from 162 to 642 (Case 3). Since Case 2 represents a refinement which reduces
by a factor of 2 the spacing h between nodes on the initial polyhedron (as compared to

the 42-noded polyhedron of Case 1), and since Case 3 represents a further refinement
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Collapsing Sphere, N=42
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Fi1c. 7. Results for 42-node sphere run.

Collapsing Sphere, N=162
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Fic. 8. Results for 162-node sphere run.

and halving of h, it is tempting to say the error in —% as computed by the pure
GWMFE method is O(h?). However, as t — 0.0625, we have that h — 0, but the
error remains constant. Instead, consider the Gauss map # : M +— S? which maps
each point x on a surface M to the unit outward normal fi(x) of the surface at x. We
define Af to be the distance between mapped grid points on the unit sphere. Then at
all times for these three numerical test runs, the error in —% using GWMFE appears
to be O((Aﬂ)z). Thus, it would appear that high accuracy of the GWMFE solution

depends on good angular resolution of the discretized surface.

The grid maintenance operations in section 5 (which are used in more complex
microstructures such as that in section 8) strive to maintain a maximum edge length
hmax rather than a coarsest angular resolution Af. Given the statements of the last
paragraph, this implies that small grains in the computations involving grid mainte-
nance operations will have a relatively coarser angular discretization and will suffer
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Collapsing Sphere, N=642
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F1G. 10. Results for nonregularized GWMFE.

larger computational errors than larger grains. This is somewhat unavoidable, how-
ever, since in practical computations grains must be coarsened just prior to collapse.

7.2. Columnar microstructures. Our second set of test cases involve colum-
nar microstructures which are arbitrary 2-D collections of grains that are extended
into 3-D to be right cylinders. These microstructures do not possess curvature in 3-D,
and thus are amenable to a 2-D analysis.

In 2-D, microstructures moving under curvature driven motion also obey Von
Neumann’s law [17], which states that for an interior grain G surrounded by n neigh-
bors G1,Ga,...,G,, the rate of area growth of G is

(21) =T n—6).
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Fic. 12. Initial 16-node columnar microstructure and at t = 0.2. The term 16-node refers to
the number of nodes bounding top surface of internal grain.

This is easily derived as follows. We have that

A = —/ Uy, ds,

where v,, is normal inward velocity, and the integral is taken over the arclength of the
boundary of G. Since v, = ukK,

dA

— = — / uK ds

faG df is not 27 if n > 0, since at each triple point junction, there is a 60° loss of
angle due to the 120°-120°-120° equilibrium angle condition (Figure 11) that exists
at triple points resulting from the necessity of force balance of surface tension at the
triple point. The interior grain G has n such triple points. We thus obtain (21).

In Figure 12 we show the initial grid for a five grain columnar microstructure
with the axis running top to bottom. A central square-columnar grain G (light in
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color) is surrounded by four trapezoidal-columnar grains G1, Ga, G3, G4 (darker in
color). The area A of the top surface of the central grain is 1 x 1 = 1, while the
total top area of all five grains put together is 2 x 2 = 4. GRAIN3D was run on this
initial microstructure using the same parameter values as in the regularized run of
section 7.1. Nodes on the exterior planes were allowed to slide on the planes, nodes
on exterior edges were allowed to slide on the edges, and the eight corner nodes were
fixed. For this run, each of the four interfaces between the four surrounding grains
(i.e., G1 NGa, Ga N G3, G3N Gy, and G4 N G1) was associated with and pinned to a
vertical exterior edge.

Figure 12 also shows the evolved microstructure, as computed by GRAIN3D, at
t = 0.2. The grains have remained columnar and the top surface of the central grain
has shrunk. The four triple points on the top surface have adopted the correct 120°—
120°-120° angle at this time. In Figure 13, we see computed and exact curves for

—% vs. t and A vs. t, where we have used (21) with n = 4 to obtain the “exact” value

—”fi—‘? = 2?” (We have called this run N = 16, since A is bounded by 16 computational

nodes.) For this run, the computed and exact A vs. ¢ are virtually identical. For most

of the run, the computed and exact values for —24 are virtually indistinguishable.

dt
At the beginning of the run there is a “blip,” where f% is significantly higher than

the theoretical value of 27” We attribute this to the state of the four triple points
in the initial data. These four triple points are 90°-135°-135° in the initial data,
which is not the 120°-120°-120° force balance equilibrium that should exist. Thus
the initial blip represents rapid relaxation to the force balance state; essentially the
code has accepted “incorrect” initial data (with forces not in balance at the triple
points) and relaxed it to an acceptable state on a rapid time scale. The final blip in
—% occurs near the terminal time ¢ = % when the central grain has been reduced
to an extremely thin column, by which time the recoloring algorithm would have
changed the topology, had it been activated. This blip is not surprising since the
slender grain carries with it virtually no energy (due to its vanishingly small surface
area), and therefore errors present (i.e., due to the nonphysical regularization forces)
may well be magnified at this advanced stage.

In Figure 14, we see f% vs. t and A vs. t for an N = 32 geometry (i.e., at twice
the grid density of the one pictured in Figure 12). The initial anomalously high f%
blip is shorter lived, and the final blip at the terminal time has disappeared.

A study of “pure” GWMFE error (with regularization turned off) is impossible
for this problem. It was possible in the highly symmetrical sphere collapse problem of
section 7.1, but in this problem, which exhibits less symmetry and which has chang-
ing triple point angles, the regularization forces play a crucial role in preserving the

positivity of all triangle areas and tetrahedral volumes throughout the computation.

8. Numerical example with 3-D microstructure. In this section, we show
how GRAIN3D evolves a truly 3-D microstructure to steady-state, successfully main-
taining mesh quality and performing necessary topological changes during the course
of the calculation. In Figure 15(a), we show an initial five grain microstructure pro-
vided by the LaGriT tetrahedral mesh generator. We evolve the mesh with GRAIN3D,
using the same regularization parameters as in the previous regularization runs.
The nodes are allowed to slide on the external surfaces, as in section 7.2. Every
At oeeage = 0.04 time units, the mesh topology is massaged: edges that are too long
are bisected, unneeded nodes are eliminated, and connections are swapped if neces-
sary. Whenever we detect that a topological component is about to collapse (such
as a grain, a grain-grain interface, or a triple line) in the next At .y = 0.002 time
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Collapsing 4Sided Cylindrical Grain, N=16
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Fic. 14. Results for 32-node run.

units, we call the recoloring algorithm to effectively perform the necessary topological
change.

The massage algorithm is called immediately after t = 0.00, and the regularization
forces (especially perimeter dependent surface energy (12)) fatten the elements, so by
t = 0.02 (Figure 15(b)), the mesh is much improved. In 15(c), we have made one
grain graphically transparent to reveal triples lines and quadruple points. At ¢ = 0.20
(15(d)), the invisible grain has shrunk. At ¢ = 0.30 (15(e)), the invisible grain has
detached from the rear wall. In 15(f), the invisible grain is near collapse. By 15(g),
the grain has been eliminated by the recoloring algorithm. This figure also shows a
small rear grain about to collapse. In 15(i) this grain has collapsed and we are down
to three grains. In fact, the microstructure is now columnar (the axis runs front to
back) and would be perfectly well modeled by a 2-D front tracking code, such as that
described in [5]. At ¢ = 1.50 (15(j)), the light colored grain has disappeared, leaving
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(¢) t = 0.02. Grid with grain graphically

removed for illustration.

(e) t = 0.30. Invisible grain has detached

from rear wall.
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(f) ¢t = 0.45. Invisible grain about to collapse.

F1G. 15 (a)—(f). Grain evolution time sequence computed by GRAIN3D.

a collapsing circular-columnar grain and a larger complementary grain. At ¢t = 1.75
(15(k)), the circular-columnar grain has collapsed, leaving the entire computational
domain covered by a single grain. Evidence of the grain collapse is visible in that
the grid is somewhat finer in the bottom right-hand corner. Finally, at ¢ = 1.80
(15(1)), massage and regularization have coarsened the grid in the vicinity of the last
collapsed grain. Of course, the difference between the grids at t = 1.75 and t = 1.80 is
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(i) t = 1.10. A second grain has collapsed. (j) t = 1.50. A third grain has collapsed.

The microstructure is now 2-D.

(k) t = 1.75. Fourth grain has collapsed. (1) t = 1.80. Grid improved by regularization

One grain left. and massage.

Fic. 15 (g)—(1). Grain evolution time sequence computed by GRAIN3D.

purely nonphysical—the grain is the same, but the grid is different. The run is truly
completed at t = 1.75 when the microstructure evolution has ceased, but it isn’t until
t = 1.80 that the grid has settled down.
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